
MS/Ph.D. Comprehensive Exam, Fall 2014 
Classical Mechanics 500 

 

Two masses m1 and m2 are joined by a massless spring (force constant k and natural length l0) 

and are confined to move in a frictionless horizontal plane, with center of mass (CM) position ሬܴԦ 
and relative position ݎԦ.  

a) What are the generalized coordinates of the system? 

b) Write down the Hamiltonian using the generalized coordinates. 

c) Which are the ignorable (cyclic) coordinates? Explain. 

d) Write down all the Hamilton equations of motion. 

e) Combine the equations for r  and write down a single radial equation.  Solve the radial 
equation for the special case where one of the conjugate momenta is zero. 

  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Electricity & Magnetism 500 

 

 

Consider three point charges along the z axis as shown 
in the diagram. 

 

a) Calculate the potential at a point on the positive 
z axis for ݖ ≫ ܽ. 

 

b) Expand the result from part (a) in powers of z to 
show that the lowest non-vanishing multipole 
moment is a quadrupole. 

 

c) Imagine that the three point charges shown are all connected by insulating rods to make a 
rigid structure. If placed in a uniform static electric field, would this configuration of 
point charges experience a net force? A net torque? Explain your reasoning. 

 

d) Draw a non-collinear [i.e., not all lying along one line] configuration of point charges that 
also has a quadrupole moment as its lowest non-vanishing multipole moment. 
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MS/Ph.D. Comprehensive Exam, Fall 2014 
Quantum Mechanics 500 

 
 
A particle is in a potential of the form V(x) = 0 for 0 < x < a, and V(x) = ∞ otherwise. 
   

(a) Find the eigenfunctions )(xn and energy eigenvalues En. 

 

(b) Calculate  2xxx   when the system is in the state )(xn . 

 

(c) Calculate  2xxp  , where p is the momentum, when the system is in the 

state )(xn . 

 
(d) Calculate xp  when the system is in the state )(xn  and show that the result is 

consistent with the uncertainty principle for all n. 
 

Suppose now that the system is in the state .sin)(
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(e) Find the corresponding time dependent wave functions ),( tx . 
 
[Hint: You can avoid doing any integrals by first writing the sin function in terms of complex 
exponentials.] 
 
(f) Find the normalization factor A. 
 
(g) Find the probability that a measurement of the energy yields the value E3. 

 

  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Thermodynamics 500 

 

In a refrigerator, we are interested in the temperature change produced by a gas expansion 
characterized by the rate of change of temperature with pressure at constant enthalpy (the Joule-
Thomson coefficient). 

a) Derive the following expression for the Joule-Thomson coefficient,  :  

    )1(   T
C

V

P

, 

where V is the volume, CP is the heat capacity at constant pressure, T is the absolute 
temperature, and  is the coefficient of thermal expansion.  

b) Show that the Joule-Thomson coefficient of an ideal gas is zero. 

c) Find the condition for the Joule-Thomson coefficient in an imperfect gas to be 
positive, so that a drop in pressure produces a drop in temperature.  

Consider now an N-particle imperfect gas that obeys the Equation of State  

)1( B
V

N
kT

V

N
P  , 

where B, which characterizes the non-ideality, is a parameter that is negative at low temperature 
and increases with temperature, becoming positive at high temperatures.  

d) Provide an explanation for the temperature dependence of B in terms of inter-particle 
interactions. 

e) Show that the Joule-Thomson coefficient for this gas changes sign at some 
temperature (the “inversion temperature”) and provide a qualitative explanation for 
this behavior.  

 

  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Classical Mechanics 600-1 

 
 
A long pendulum is suspended from a point (0,0,l) above ground on the northern hemisphere and 
brought to swing in a vertical plane with small amplitude. 
 
(a) Let ( , , )x y z  be the axes of a coordinate system associated to the earth with z  directed 

upwards and x  along a geodesics facing towards the equator.  Obtain the equation of 
motion for this system.   

 Note:  The tension on the thread is  ܨԦ௧௘௡௦ ൌ ቀ൫1	௧௘௡௦|ܨ| െ
೥
೗
	൯̂ݖ െ 	ೣ

೗
	௫ොି	೤೗ 	೤ෝቁ 

 
 
(b) Ignoring the centrifugal force and any velocity pointing outwards (to the sky), i.e.,  

0   , z x y , solve the equation of motion and find the frequency of horizontal angular 

deflection (  d
d t ) of the pendulum. 

 
(c) Determine the horizontal projection of the path described by the pendulum and its 

velocity for the start conditions: x a y x y( ) ; ( ) ; ( ) ( )0 0 0 0 0 0    .  

Determine the times and velocities when the pendulum arrives at turning points.  Sketch 
the projection of the pendulum’s path on the horizontal plane.  

 
(d) Describe the motion of the pendulum if it is brought to swing by pushing the bob from 

the equilibrium point in the y-direction by an initial velocity v a ay
g

l0 0   . 

Determine the times and velocities when the pendulum arrives at turning points.  Sketch 
the projection of the pendulum’s path on the horizontal plane.  

 

  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Classical Mechanics 600-2 

 
 
Consider a mass m which is constrained to move on a straight line. The mass is bound to a fixed 
point by harmonic force with potential energy 
 

    , 
 
where K is a constant, R is the rest length of the spring, and  r is the distance of the particle from 
the fixed point. The distance from the point to the line is l > R. A mechanical model of this 
system is a mass sliding on a straight track; the mass being connected to a fixed point by a 
spring, as shown in the figure. 
 
 

 
 
 

 
(a) Obtain the Lagrangian of this system. 
 
(b) Find the stable equilibrium position(s) of the system. 

 
(c) Obtain a simplified Lagrangian describing the harmonic approximation near equilibrium.  
   Hint: Expand the Lagrangian in a Taylor series in x keeping only the first nontrivial terms. 
 
(d) Using the obtained Lagrangian, compute the frequency of the small oscillations about the 

equilibrium. 
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MS/Ph.D. Comprehensive Exam, Fall 2014 
Electricity & Magnetism 600-2 

 
 
Consider a surface current density on a cylindrical surface of radius a, given by the expression: 
 

ሬሬԦܭ ൌ ଴ܭ cosሺ∅ሻ  ݖ̂
 
The cylindrical surface is infinite in the z-direction. 
 

(a) Find the vector potential inside and outside the cylindrical surface. Do not use the Biot-
Savart law.  
 

(b) Find the auxiliary field H inside and outside the cylindrical surface from the vector 
potential. 
 

(c) Sketch the magnetic field inside and outside the cylinder. 
 
For the questions below, assume that the cylinder is solid and that it is uniformly magnetized 
along the z-direction and where, unlike in parts (a)-(c), there are no additional surface currents. 
 

(d) Find the vector potential inside and outside the cylinder. 
 

(e) Check whether the vector potentials in (d) satisfy the Coulomb gauge condition.  
 

(f) Check whether the vector potentials in (d) satisfy the boundary conditions.  
 
  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Electricity & Magnetism 600-3 

 
 
Consider a rest frame K in which a source point particle with charge qs stays fixed at the origin. 

In K, a mobile test point particle with charge qts is initially placed at t = 0 at a position ݕԦ଴
ᇱൌ ଴ݕ

ᇱ ݁̂௬ᇱ  

on the y‐axis at a distance ݕ଴
ᇱ  from qs. Initially qts is also at rest. 

(a) Find the electric field 	ܧሬԦ′ሺ0ሻ , the force ܨԦ′ሺ0ሻ, and the acceleration 	 Ԧܽ′ሺ0ሻ acting on qts as 
a result of qs at the initial time. 
 

We now wish to study the same physical problem in a (laboratory) frame K relative to which K’ 

slides with constant velocity ݓሬሬԦ ൌ ௫ᇱ̂݁ݓ  along their common x- and x‐ axes. 

(b) Make a sketch of the two relatively moving inertial frames K and K’ and mark the position 

of qs. 

 

(c) Write the Lorentz transformation among the coordinates (ct, x, y, z) and (ct, x, y, z) in K 
and K’, respectively. 

An electromagnetic field appears in K, related to that in K’, as 	ܧሬԦ∥ ൌ ∥ሬԦܧ
ᇱ, ሬԦୄܧ	 ൌ ሬԦୄܧߛ

ᇱ , ∥ሬԦܤ	 ൌ ∥ሬԦܤ
ᇱ ൌ 0,

ሬԦୄܤ				 ൌ ߛ ଵ

௖
ሬሬԦݓ ൈ  .ሬԦᇱܧ

(d) By considering the non-relativistic limit of w ≪ c and ≃1, provide an intuitive 

justification for the appearance of ܤሬԦ in K. 

 

(e) Determine the Lorentz force acting on the test point particle qts in K initially at t = t’ = 0 

(at x = x’= 0). 

 

(f) Determine the equation of motion for qts initially. 
 

(g) Determine the accelerations  Ԧܽሺ0ሻ and  Ԧܽ′ሺ0ሻ of qts in K and K’ and comment on their 
relative magnitudes, especially in the non-relativistic and ultra-relativistic limits. 

  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Quantum Mechanics 600-1  

 

An electron of charge e moves in one dimension and is confined to the right half space (x>0). 
The plane x=0  is an infinite perfect conductor so that the effective potential for the electron is 
due to its image charge. 

a) What is that potential? 

b) What boundary condition(s) must the electron’s wave function satisfy? 

c) What is the ground state energy of the electron? 

d) How far, on average, is the electron from the conductor?  

 

The following integral may be useful: 
 

!)1(,
)1(

0
1

2 nn
a

n
dxex

n
xan 







  

 

  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Quantum Mechanics 600-2 

 
 
Consider a particle of mass µ and charge q constrained to move in one dimension, which is 
subjected to a harmonic oscillator potential of frequency ω. 
 

a) Define appropriate operators a, a+ as combinations of the X and P operators to factorize 
the Hamiltonian H. 
 

b) What are the energy eigenkets and eigenvalues? 
 

Now consider this charged oscillator in a homogeneous electrostatic field in positive x direction. 
 

c) By completing the square find the translation that allows the new Hamiltonian H’ to be 
written as a harmonic oscillator up to a constant. What are the energy eigenvalues? 
 

d) Show that the action of the translation operator ࢀሺ݈ሻ ൌ ݁ି
೔
೓
 ௟ is described by theࡼ

transformation ࢀାሺ݈ሻ	ࢄ	ࢀሺ݈ሻ ൌ ࢄ ൅ ݈  and write the new energy eigenkets as            
	| ത݊ۧ ൌ  .ሺ݈ሻ|݊ۧ using an appropriate constant lࢀ
 

e) If the particle is initially in the ground state of the original Hamiltonian H from part (a), 
what is the probability of finding it in the ground state of the new Hamiltonian H’ from 
part (c)? 

 
  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Quantum Mechanics 600-3 

 
 
In first-order time-dependent perturbation theory, the transition probability amplitude from an 

initial state  i at time ti to a final state f at time tf is given by the coefficient 

 

ܽ௜→௙ ൌ 	
1
݅԰
න ݐ݀
௧೑

௧೔

	݁௜ሺா೑ିா೔ሻ/԰	ܪ|݂ۦଵሺݐሻ|݅ۧ 

 
where H1(t) is the perturbing Hamiltonian. Consider a harmonic perturbation of the form 
 

ሻݐଵሺܪ ൌ ᇱ݁ି௜ఠ௧ܪ ൅  ற݁௜ఠ௧′ܪ
 

acting only in the time interval T  between ti = 0 and tf = T > 0. Assume that ߱௙௜ ൌ
ଵ

԰
൫ܧ௙ െ ௜൯ܧ ൐

0. 
 

(a) Determine the corresponding probability amplitude ܽ௜→௙ሺܶሻ. 
 

(b) Consider an absorption process, for which ߱	~	߱௙௜ ൐ 0. Determine the corresponding 

transition probability ௜ܲ→௙ሺܶሻ ൌ หܽ௜⟶௙ሺܶሻห
ଶ
. 

 

(c) Draw a plot of ቊ
ୱ୧୬ቂభ

మ
൫ఠିఠ೑೔൯்ቃ

ቂభ
మ
ሺఠିఠ೑೔ሻቃ

ቋ
ଶ

as a function of ሺ߱ െ ߱௙௜ሻ for given T.  

 

Argue that for T  +, that function approaches 2ߜܶߨሺ߱ െ ߱௙௜ሻ. An explicit calculation 

of the coefficient is not required, however. 
 

(d) From these considerations, obtain Fermi’s Golden Rule for the Transition Probability 
Rate, i.e., per unit time. 

 
  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Statistical Mechanics 600-1 

 
 
An N-particle monatomic ideal gas is contained in a vertical cylinder of area A that is sealed with 
a piston of mass M that is free to move without friction. In this problem, the effect of gravity on 
the piston must be included but its effect on the particles of the gas can be neglected.  
 

(a) Describing the state of the piston by a single coordinate z0 and momentum p0, write 
out the Hamiltonian for the system. 

 
(b) Calculate the canonical partition function. 

 
(c) Using the canonical ensemble, calculate the probability distribution P(z0) for the 

piston height. 
 

(d) Determine the most probable height, z*, and the average height, <z0>, of the piston at 
a given temperature T for the gas in the cylinder. 

 
(e) Show that for large N, P(z0) is a Gaussian function. 

 

(f) Show that the fluctuation in the gas volume is given by 
NV

V 1



. 

 
 
The following results may be useful: 
 

  




0

! dxexN xN

 
 

    2
1

2! NeNN NN    for large N. 
 
 
  



MS/Ph.D. Comprehensive Exam, Fall 2014 
Statistical Mechanics 600-2 

 
 
A DNA molecule can be crudely modeled as a pair of parallel strands, each composed of N 
sequential units. In the ground state configuration, each pair of corresponding units on the two 
strands are chemically linked. In order to break one link, an energy ε > 0 must be provided to the 
pair of units facing each other. It is also required that either the pair sits at one or the other end of 
the double strand, or, if not, that at least one of the two links adjacent to the link that could be 
opened with energy ε is already open. In other words, the double strand can only be unzipped 
sequentially. It would take infinite energy to open a link if both of its adjacent links are still 
closed. An example of a possible unzipping configuration is sketched in Figure 1. 

 
 

(a) For now, let us also suppose that the N-th link at the right end of the double strand is 
externally blocked from opening. In other words, the double strand can only unzip 
starting from the left end. Determine the Canonical Partition Function QN(β) for a single 
double strand of N units at an absolute temperature such that ߚ ൌ 1/݇஻ܶ. You may set 

for convenience x ≡ e-βε	and recall that		


 



1

0 1

1N

n

N
n

x

x
x for 0 < x < 1. 

 
(b) Determine the Canonical Probability Ρn(β) that n links are opened from the left end of the 

double strand of N units at temperature T. 
 

(c) Determine the average number n

N

n

Pnn 





1

0

 of open links at T. How is this result related 

to the average excitation energy ܷ ൌ െ డ

డఉ
ሾlogܳே ሺߚሻሿ? 

 
Let us now make the alternative hypothesis that the double strand can be equally opened from 
both ends. In Figure 2, a possible configuration is sketched, in which n1 links are opened from 
the left end, while n2 links are opened from the right end, generating a total of n = n1 + n2 open 
links. 

{problem continues on the next page} 

g g g g g

n open links N - n closed links

Figure 1



MS/Ph.D. Comprehensive Exam, Fall 2014 
Statistical Mechanics 600-2, continued 

 

 
 

(d) Determine the degeneracy gn of the states that have a total of n open links from both ends. 
Distinguish the case of a totally unzipped double strand, for which n = N, from the cases 
of a partially unzipped strand, for which n ≤ N – 1. The n = 0 case of a totally closed 
double strand is a particular instance of those with n < N. 
 

(e) Determine the Canonical Partition Function Zn(β) for a single double strand that can be 
unzipped from both ends at temperature T. 
 

(f) Determine the Canonical Probability pn(β) that a total of n links can be open from both 
ends of a double strand at temperature T. 

 
 

 

g g g g

n1 open links (N - n) closed links

g g g g g

(n-n1) open links

Figure 2


